翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

biological network : ウィキペディア英語版
biological network

A biological network is any network that applies to biological systems. A network is any system with sub-units that are linked into a whole, such as species units linked into a whole food web. Biological networks provide a mathematical analysis of connections found in ecological, evolutionary, and physiological studies, such as neural networks. The analysis of biological networks with respect to human diseases has led to the field of network medicine.
==Network biology and bioinformatics==
Complex biological systems may be represented and analyzed as computable networks. For example, ecosystems can be modeled as networks of interacting species or a protein can be modeled as a network of amino acids. Breaking a protein down farther, amino acids can be represented as a network of connected atoms, such as carbon, nitrogen, and oxygen. Nodes and edges are the basic components of a network. Nodes represent units in the network, while edges represent the interactions between the units. Nodes can represent a wide-array of biological units, from individual organisms to individual neurons in the brain. Two important properties of a network are degree and betweenness centrality. Degree (or connectivity, a distinct usage from that used in graph theory) is the number of edges that connect a node, while betweenness is a measure of how central a node is in a network. Nodes with high betweenness essentially serve as bridges between different portions of the network (i.e. interactions must pass through this node to reach other portions of the network). In social networks, nodes with high degree or high betweenness may play important roles in the overall composition of a network.
As early as the 1980s, researchers started viewing DNA or genomes as the dynamic storage of a language system with precise computable finite states represented as a finite state machine. Recent complex systems research has also suggested some far-reaching commonality in the organization of information in problems from biology, computer science, and physics, such as the Bose–Einstein condensate (a special state of matter).
Bioinformatics has increasingly shifted its focus from individual genes, proteins, and search algorithms to large-scale networks often denoted as -omes such as biome, interactome, genome and proteome. Such theoretical studies have revealed that biological networks share many features with other networks such as the Internet or social networks, e.g. their network topology.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「biological network」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.